ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ АРЕНДНОЕ ПРЕДПРИЯТИЕ ПРОМСТРОЙПРОЕКТ

ПОСОБИЕ 3.91 к СНиП 2.04.05-91

Вентиляторные установки

Главный инженер института И.Б.Львовский Главный специалист Б.В.Баркалов

УДК 697.911

Рекомендовано к изданию решением секции Технического Совета арендного предприятия Промстройпроект.

Пособие 3.91 к СНиП 2.04.05-91 разработано Промстройпроектом (канд. техн. наук Б.В.Баркалов) при участии ин-та СантехНИИПроект (канд. техн. наук Л.А.Бычкова) взамен раздела 11 пособия к СНиП 2.04.05.86.

В Пособии 3.91 приводятся указания по расчету потерь давления в установках радиальных вентиляторов и их аэродинамических характеристик. Течение воздуха в вентиляторе и присоединение к нему фасонных частей взаимосвязаны.

Пособие предназначено для специалистов в области отопления, вентиляции и кондиционирования воздуха.

Рецензент доктор технических наук В.П.Титов Редактор инженер Н.В.Агафонова

- 1. Вентиляторной установкой называют вентилятор с присоединенными фасонными элементами сети, находящимися на расстоянии до пяти диаметров (5Dv) от входного и 3Dg от выходного отверстия, где Dg = 4,4v/P, Av и P площадь и периметр выходного отверстия вентилятора. Течение воздуха в вентиляторе и присоединенных фасонных элементах взаимосвязаны, поэтому потери давления в установках с радиальными вентиляторами и аэродинамические характеристики вентустановок следует рассчитывать по данному Пособию. Характеристики вентустановок с осевыми вентиляторами следует рассчитывать по работе [1].
- 1. Бычкова Л.А. Рекомендации по расчету гидравлических сопротивлений сложных элементов систем вентиляции М., Стройиздат, 1981, 29 с.
- 2. Коэффициенты гидравлического сопротивления (потерь давления) входного и выходного элементов вентустановки ζ определены экспериментально и отнесены к динамическому давлению вентилятора $P_{\rm dv}$ Па. Величина ζ зависит от вида элемента, его геометрических характеристик, аэродинамической схемы вентилятора, режима его работы и дается при фиксированном расходе воздуха для трех характерных режимов: оптимального, соответствующего расходу $L_{\rm opt}$ м 3 /ч, при максимальном значении КПД, и на границах аэродинамической характеристики вентилятора, соответствующих значению $0.9\eta_{\rm max}$ слева L_1 и справа L_2 от оптимального режима (рис. 1). При расположении рабочей точки на характеристике вентилятора в промежутке между оптимальным режимом и границей рабочей области величину коэффициента ζ следует определять интерполяцией.
- 3. Потери полного давления во входном и выходном элементах вентустановки ΔP , Па, рассчитываются по формуле:

$$\Delta P = \sum \zeta P_{dv} \tag{1}$$

где $\sum \zeta$ - сумма коэффициентов сопротивления входного и выходного элементов,

$$P_{dv} = \rho / 2 \left(\frac{L}{A_p} \right)^2$$
 - динамическое давление вентилятора в рабочей точке, Па.

- 4. Коэффициенты сопротивления фасонных элементов вентиляторной установки ζ рекомендуется определять:
 - а) для входных элементов по табл. 1 и 2;
 - b) для выходных элементов по табл. 3-5;

для составных элементов за вентиляторами с лопатками, загнутыми назад, показанных на рис. 2, при $\bar{l}=l/Dg=1$ -1,5; n=A/Av=1,5 - 2,6; $\overline{H}=H/Dg=1$ - 2 принимать равными $\zeta=2$ при L_I , $\zeta=0$,7 при $L_{\rm opt}$ и L_2 .

5. Полное давление вентустановки $P_{v}^{'}$, Па, меньше полного давления вентилятора на величину потерь в присоединенных фасонных элементах и равно:

$$P_{V}^{'} = Pv - \Delta P \tag{2}$$

6. КПД вентустановки η' меньше КПД вентилятора на величину потерь, вызванных присоединительными элементами на входе и выходе

$$\eta' = \eta - \Delta \eta = \eta \left(l - \sum \Delta \overline{\eta} \right) \tag{3}$$

где η - К
пд вентилятора при заданном расходе воздуха;

 $\Delta\eta$ и $\sum \Delta\overline{\eta}$ - суммарное, действительное и относительное снижение КПД, вызванное присоединительными элементами.

- 7. Относительное снижение КПД вентустановки определяется:
- а) для входных элементов по табл. 1 и 2;
- b) для выходных элементов величина относительного снижения КПД равна:

$$\Delta \overline{\eta} = \zeta \frac{P_{dv}}{P_{v}} \tag{4}$$

где ζ принимается по табл. 3-5 или по п. 4.в.

- 8. Применение оптимальных способов присоединения вентилятора к сети и учет потерь в элементах присоединения особенно важен, когда доля динамического давления вентилятора в полном $P_{\rm dv}/P_{\rm v}$ велика, т.е. при расположении рабочей точки вблизи оптимального режима и в правой части рабочей области аэродинамической характеристики вентилятора.
- 9. Для преобразования характеристики полного давления вентилятора и характеристику полного давления вентиляторной установки необходимо рассчитать согласно п.п. 3 и 4 потери полного давления в элементах присоединения при фиксированном расходе воздуха в названных в п. 2 трех характерных точках. Затем вычесть эти потери из характеристики вентилятора (п.5) и по полученным трем точкам построить характеристику полного давления $P_{\nu}^{'}$ вентиляторной установки (рис.1).

Аналогично могут быть построены кривые КПД η' (рис.1) и статистического КПД η_3 вентиляторной установки.

- 10. Рабочая точка вентиляторной установки 4 (рис.1) находится на пересечении характеристики сети с характеристикой полного давления вентиляторной установки. Рабочей точкой 5, находящейся на пересечении характеристики сети с каталожной характеристикой вентилятора, пользоваться не следует, т.к. это может явится причиной значительного снижения фактического расхода воздуха L' по сравнению с его расчетной величиной L.
- 11. Если потери в вентустановке вызвали снижение расхода воздуха с L до L' м 3 /ч (рис.1), то для получения требуемого расхода скорость вращения п должна быть увеличена до определяемой по формуле:

$$n' = n L / L' \tag{5}$$

12. Входные элементы, усиливающие неравномерность воздушного потока (прямоугольные колено, коробка, диффузор и т.п.) рекомендуется размещать от вентилятора на расстоянии, превышающем указанные в п. 1.

Примечание. Потери в прямоугольной входной коробке, поворачивающей поток воздуха на 90°C, не могут значительно превышать потери в прямоугольном колене.

13. Хорошо изготовленные и смонтированные гибкие вставки практически не влияют на характеристики вентустановок, но при несносности их с входом в вентилятор, при провисании материала и уменьшении проходного сечения гибкие вставки являются источником существенных потерь.

Пример 1. Задано определить оптимальные геометрические характеристики и гидравлические потери пирамидального диффузора за радиальным вентилятором с лопатками, загнутыми вперед. Относительная длина диффузора $\bar{l} = l/Dg = 1,5$.

Решение. По рис.3б находим, что длине $\bar{l}=1.5$ соответствует оптимальная степень расширения n=1,9. Коэффициент сопротивления в таком диффузоре согласно табл. 3 составит на оптимальном режиме 0,3, на левой границе рабочей области 0,5, на правой границе 0,31.

Пример 2. Требуется по заданной характеристике полного давления радиального вентилятора с лопатками, загнутыми назад, построить характеристики вентустановки (рис.1).

Перед входом в вентилятор размещен плавный отвод, за вентилятором следует диффузор, отвод, короб.

Решение. Согласно табл. 2 коэффициенты ζ и относительное снижение КПД установки с плавным отводом $R=1,5D_0$ на входе для трех характерных режимов составят: $\zeta=0,4;$ 0,45 и 0,36;а $\Delta \overline{\eta}=0,01;$ 0,01 и 0,02.

За вентилятором размещен диффузор ($\bar{l}=1,5,\,n=2$), отвод (R=Dg) и короб $\overline{H}=H/Dg=2$. Для выходного элемента по п. 4в коэффициенты ζ для трех характерных режимов работы вентилятора составят: при L_1 коэффициент $\zeta=2$, при Lopt и L_2 , $\zeta=0,7$. Используя эти значения, рассчитываем по формуле 4 относительное снижение КПД установки под влиянием элементов выхода.

Полное давление вентиляторной установки $P_{\nu}^{'}$ на характерных режимах определяется по формуле (1) как разность полного давления вентилятора и суммарных потерь давления во входных и выходных элементах установки.

Относительное снижение КПД установки в каждой из трех точек суммируется для элементов входа и выхода, а КПД рассчитывается по формуле (3). По полученным трем точкам строится кривая КПД вентустановки.

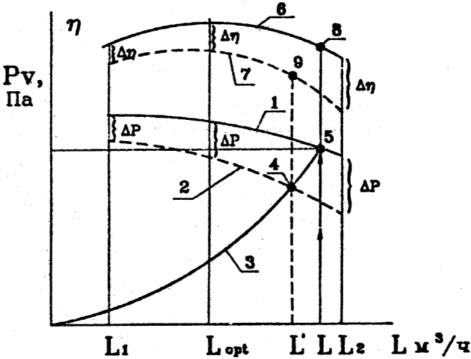


Рис. 1. Аэродинамические характеристики вентилятора и вентиляторной установки: 1- кривая полного давления вентилятора; 2- кривая полного давления вентиляторной установки; 3- характеристика сети; 4- рабочая точка вентиляторной установки; 5- рабочая точка вентилятора (без учета потерь давления в фасонных присоединительных элементах сети); 6- кривая КПД вентилятора; 7- кривая КПД вентиляторной установки; 8- значение КПД вентилятора, соответствующее рабочей точке 5; 9- значение КПД вентиляторной установки, соответствующее рабочей точке

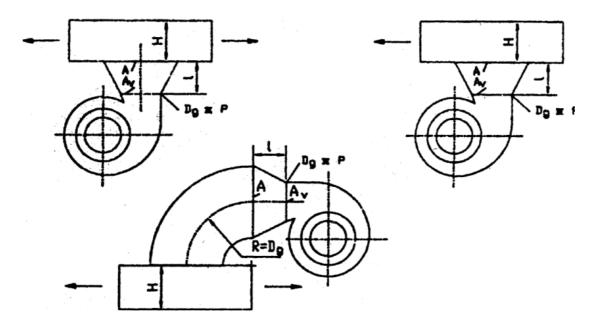


Рис. 2. Составной присоединительный элемент вентиляторной установки: Av, A – площади поперечного сечения диффузора, м²; l – длина диффузора, м; H - высота воздуховода, м; Dg - гидравлический диаметр выходного сечения вентилятора $Dg = 4Av/\Phi$, где Φ - периметр выходного сечения вентилятора, м.

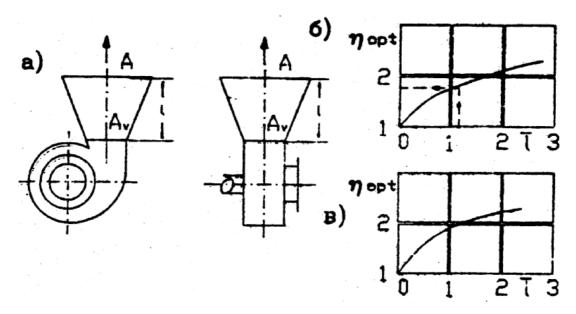


Рис. 3. Геометрические характеристики оптимальных пирамидальных диффузоров за радиальными вентиляторами: а - размеры диффузоров; б - график оптимальных относительных размеров диффузоров $\bar{l}=l/\frac{4Av}{\Phi}$ и $n_{opt}=A/Av$ за вентиляторами с лопатками загнутыми вперед; в- то же, но с лопатками загнутыми назад; Av, A- площадь поперечного сечения диффузора, м; Φ - периметр выходного сечения вентилятора, м.

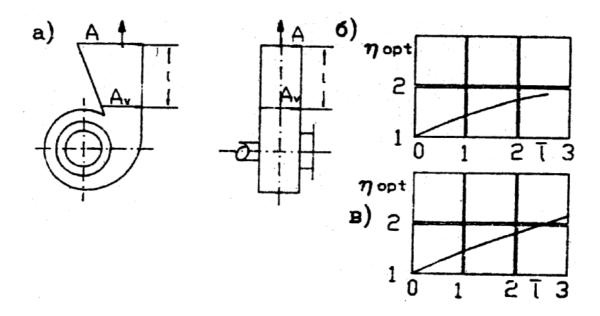


Рис. 4. Геометрические характеристики оптимальных, плоских несимметричных диффузоров за радиальными вентиляторами: а - размеры диффузоров; б - график оптимальных относительных размеров диффузоров $\bar{l}=l/\frac{4Av}{\Phi}$ и $n_{opt}=A/Av$ за вентиляторами с лопатками загнутыми вперед; в- то же, но с лопатками загнутыми назад; Av, A - площадь поперечного сечения диффузора, м²; l- длина диффузора, м; Φ - периметр выходного сечения вентилятора, м.

Схемы элементов входа		$\zeta/\Delta\overline{\eta}$	Режим работы вентилятора		
			L_1	L_{opt}	L_2
Cxema 1	R=1-1,5D ₀	$\zeta \ \Delta \overline{\eta}$	0,4 0,05	0,4 0,05	0,35 0,1

	$rac{\zeta}{\Delta\overline{\eta}}$	2 0,3	2 0,3	2 0,4
$\bar{l} = 1.5$ n = 0.4 - 0.7	$\zeta \over \Delta \overline{\eta}$	0 0	0 0	0 0
n = 1,5	$\frac{\zeta}{\Lambda \overline{n}}$	0 0 04	0,2 0.08	0,2 0,12
l = 0,5	ζ	0,5	0,8	0,7
n = 2	$\Delta \overline{\overline{\eta}}$	0,08	0,20	0,41
n = 1,5	ξ_	0,1	0,15	0,1
l = 0.8	$\Delta\eta$			$\frac{0,06}{0,2}$
n = 2	$\Delta \overline{\overline{\eta}}$	0,06	0,06	0,2
n = 1,5		0,2	0,2	0,15
	$\Delta \overline{\overline{\eta}}$	0,05	0,06	0,09
	$rac{\zeta}{\Delta\overline{\eta}}$	0,4 0,07	0,5 0,14	0,4 0,22
	$n = 0.4 - 0.7$ $n = 1.5$ $\bar{l} = 0.5$ $n = 2$	$\bar{l} = 1,5$ $n = 0,4 - 0,7$ $\Delta \bar{\eta}$ $\bar{l} = 1,5$ $\bar{l} = 0,5$ $\Delta \bar{\eta}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Значение коэффициентов сопротивления ζ и относительного снижения КПД $\Delta\overline{\eta}$ установок радиальных вентиляторов с лопатками, загнутыми назад

Схемы элементов входа		$\zeta/\Delta\overline{\eta}$	Режим работы вентилятора			
			L_1	$L_{ m opt}$	L_2	
Схема 1	R=1-1,5D ₀	$rac{\zeta}{\Delta\eta}$	0,4 0,01	0,4 0,02	0,36 0,02	
Схема 2		$rac{\zeta}{\Delta \overline{\eta}}$	1 0,08	1 0,08	1 0,20	
Схема 3	$ \bar{l} = 1 $	$\underline{\begin{array}{c}\zeta\\\Delta\overline{\eta}\end{array}}$	0,7 0,07	0,3 0,07	0,2	
	$\bar{l} = 1.2$ $n = 0.5$	$\frac{\zeta}{\Delta\overline{\eta}}$	0,8	0,4	0,3	
	$\bar{l} = 1,4$ n = 0,4	$rac{\zeta}{\Delta\overline{\eta}}$	0,5 0,03	0,5 0,05	0,1 0,02	
$\bar{l} = 1 / D_0$ $n = (D_0 / D_1)^2$						
Схема 4	$n = 1,5$ $\bar{l} = 0,8$ $n = 2$	$egin{array}{c} \zeta \ \Delta \overline{\eta} \ \zeta \ \Delta \overline{\eta} \end{array}$	$ \begin{array}{r} 0,5 \\ 0,03 \\ \hline 0,5 \\ 0,02 \end{array} $	0,5 0,06 0,8 0,10	0,3 0,08 0,8 0,21	
$\vec{l} = 1 / D_0$ $n = (D_0 / D_1)^2$	$n = 1,5$ $\bar{l} = 1,4$ $n = 2$	$egin{array}{c} \zeta \ \Delta \overline{\eta} \ \zeta \ \Delta \overline{\eta} \end{array}$	$ \begin{array}{r} 0,2 \\ 0,01 \\ \hline 0,2 \\ 0,02 \end{array} $	0,3 0,04 0,3 0,04	0,3 0,07 0,7 0,08	

Значение коэффициентов сопротивления ζ установок радиальных вентиляторов с пирамидальными диффузорами на выходе (рис. 3a)

Вентилятор	Характеристика		Режим работы вентилятора			
	диффузора		L_{I}	Lopt	L_2	
Лопатки загнуты		n = 1,5	0,4	0,2	0,2	
вперед	$\bar{l} = 1$	2	0,75	0,4	0,5	
		n = 1,5	0,3	0,1	0,15	
	$\bar{l} = 1.5$	2	0,55	0,35	0,35	
	$\iota = 1,3$	2,5	0,8	0,5	0,55	
		n = 2	0,35	0,1	0,1	
	$\bar{l} = 2.5$	2,5	0,4	0,3	0,3	
	i - 2,3	3	0,55	0,3	0,45	
Лопатки загнуты		n = 1,5	1,1	0,25	0,1	
назад	$\bar{l} = 1$	2	1,25	0,2	0,15	
	$\iota - 1$	2,5	1,5	0,6	0,4	
		n = 1,5	1,1	0,15	0,15	
	$\bar{l} = 1.5$	2	1,25	0,2	0,15	
	ι – 1,3	2,5	1,5	0,45	0,2	

Таблица 4 Значение коэффициентов сопротивления ζ установок радиальных вентиляторов с плоскими диффузорами на выходе (рис.4a)

Вентилятор	Характеристика		Режим работы вентилятора			
	диффу	узора	L_{I}	Lopt	L_2	
Лопатки загнуты		n = 1,2	0,2	0,1	0,1	
вперед	$\bar{l} = 1$		0,3	0,2	0,35	
	$\iota = 1$	1,5 1,8	0,45	0,5	0,6	
		n = 1,2	0,1	0,05	0,1	
	\bar{l} =1,5	1.5	0,2	0,1	0,2	
	ι -1,3	1,5	0,22	0,2	0,35	
		1,8 2	0,25	0,35	0,55	
		n = 1,5	0,1	0,1	0,1	
	\bar{l} =2,5	2	0,15	0,15	0,35	
	1 -2,3	2,5	0,3	0,4	0,6	
Лопатки загнуты		n = 1,2	1	0,05	0,1	
назад	$\bar{l} = 1$	1.5	1	0,15	0,2	
	$\iota = 1$	1,5 1,8	1,2	0,45	0,6	
		n = 1,2	1	0,05	0,15	
	\bar{l} =1,5	1,5	1	0,2	0,2	
	ι -1,5		1,2	0,3	0,35	
		1,8 2	1,2	0,4	0,45	
		n = 1,5	1	0,15	0,1	
	\bar{l} =2,5	2	1,2	0,15	0,25	
	<i>ι</i> =2,3	2 2,5	1,2	0,4	0,45	

Таблица 5

Значение коэффициентов сопротивления ζ установок с радиальными вентиляторами

Схема	Характер истика выхода	Лопатки вентилятора	Режим работы вентилятора		
			L_1	L_{opt}	L_2
Схема 5	$R = D_{ou}$	вперед ζ	0,2	0,3	0,3
		назад ζ	0,6	0,2	0,3
Схема 6	Диффузо				
	p $n=2$,	вперед ζ	0,4	0,2	0,2
	$lpha = 14^{\circ},$ отвод $R = D_{ou}$	назад ζ	0,2	0,2	0,2
Схема 7		вперед ζ	0,2	0,2	0,2
NA PROPERTY OF THE PROPERTY OF		назад ζ	0,2	0,2 0,1	0,2